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Abstract
A three-dimensional quasiperiodic lattice, with overlapping unit cells and
periodic in one direction, is constructed using grid and projection methods
pioneered by de Bruijn. Each unit cell consists of 26 points, of which 22 are
the vertices of a convex polytope P , and 4 are interior points also shared with
other neighbouring unit cells. Using Kronecker’s theorem the frequencies of
all possible types of overlapping are found.

PACS numbers: 05.50.+q, 61.44.Br

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Since the startling discovery of five-fold symmetry in quasiperiodic materials in 1984
[1], a great deal of research has been done on this subject by both physicists and
mathematicians. Originally, quasicrystals were constructed by filling the space aperiodically
with nonoverlapping tiles, such as in Penrose tilings [2–4].1 However, recently, Gummelt
[6] motivated by physical considerations proposed a description of quasicrystals in terms of
overlappings of decagons. Further research [7–14] has shown that this may be a more sensible
way to understand quasicrystalline materials—made of overlapping unit cells sharing atoms
of nearby neighbours [8]. Here we use a multigrid method to produce a new example of
three-dimensional overlapping unit cells.

2. Multigrid construction

It is well known that a Penrose tiling can be obtained by the projection of a slab of the 5D
Euclidean lattice onto a particular 2D plane D [4, 15, 16], and hence its diffraction pattern
[17–19] has ten-fold symmetry. It is also known that not all lattice points k in Z

5 are allowed

1 For a recent review of the theory of quasicrystals, see, e.g., [5].
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(in the sense that they can be mapped onto vertices of a Penrose tiling); only those points
whose projections into the three-dimensional orthogonal space W are inside the window of
acceptance [15, 20] contribute. The window has been shown [15] to be the projection of
the 5D unit cell Cu(5) with 25 vertices into this 3D space W . Each facet shared by two
neighbouring 5D unit cell cubes is four dimensional and when projected into 3D space it
produces a polyhedron K with 12 faces. Therefore, the projections of two adjacent 5D unit
cells into 3D must share a common projected facet K. Thus the idea of overlapping decagons
must have its extension to three dimension, by projecting the 5D lattice into the space W .

If dj are the generators of the planeD and wj are the generators of its orthogonal spaceW ,
then the projection operators are the matrices DT = (d0, . . . ,d4) and W T = (w0, . . . ,w4),
such that DTW = W TD = 0, where the superscript T denotes matrix transpose. More
specifically, we choose

dT
j = (cos jθ, sin jθ), wT

j = (cos 2jθ, sin 2jθ, 1) = (
dT

2j , 1
)
, (1)

where j = 0, . . . , 4 and θ = 2π/5. Using notations and ideas introduced by de Bruijn [4],
we consider the five grids consisting of bundles of equidistant planes defined by

x cos 2jθ + y sin 2jθ + z + γj = wT
j R + γj = kj , (2)

for j = 0, . . . , 4, kj ∈ Z. In (2), RT = (x, y, z), and γj are real numbers which shift the
grids from the origin. We denote their sum by

γ0 + γ1 + γ2 + γ3 + γ4 = c. (3)

Without loss of generality, we may restrict c to 0 � c < 1.
It has been shown by de Bruijn [4] that the Penrose tiling associated with a 2D pentagrid

has simple matching rules only for c = 0. For 0 < c < 1 the corresponding generalized
Penrose tilings do not satisfy simple matching rules, and have seven different sets of vertices
corresponding to the different intervals of c [21, 22]. Nevertheless, the diffraction patterns are
believed to be the same for all values of c [23–25].

Let the integer kj be assigned to all points sandwiched between the grid planes defined
by kj − 1 and kj . Then, five integers

Kj(R) = ⌈
wT

j R + γj

⌉
, j = 0, . . . , 4, (4)

with �x� the smallest integer greater than or equal to x, are uniquely assigned to every point
R in R

3. A mesh in R
3 is now an interior volume, enclosed by grid planes, containing points

with the same five integers. One next maps each mesh to a vertex in W by

g(R) =
4∑

j=0

Kj(R)wj = W TK(R), KT(R) = (K0(R), . . . , K4(R)). (5)

The resulting collection of vertices L = {g(R)|R ∈ R
3} is a three-dimensional aperiodic

lattice. It has been proven by de Bruijn [15] that a point k in Z
5 satisfies the so-called mesh

condition and therefore can be mapped into L if and only if DT(k − γ) = DTλ, where
γT = (γ0, . . . , γ4) and λT = (λ0, . . . , λ4) with 0 < λj < 1 so that λ is a point inside the
5D unit cube Cu(5). Thus, the window of acceptance is the interior of the convex hull of the
points DTni , where ni are the 25 vertices of the 5D unit cube Cu(5), see figure 1. We choose
the 32 ni’s as follows:

n0 = 0, n31 = e0 + e1 + e2 + e3 + e4, nj+1 = e1−2j ,

nj+6 = e1−2j + e4−2j , nj+11 = e1−2j + e2−2j ,

nj+16 = e1−2j + e2−2j + e5−2j , nj+21 = e1−2j + e2−2j + e4−2j ,

nj+26 = e1−2j + e2−2j + e4−2j + e5−2j , (j = 0, . . . , 4),

(6)
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Figure 1. The projection of the 5D unit cube Cu(5) into the orthogonal 2D space D. The window
of acceptance is the interior of outer decagon Q whose vertices are given by (9). The innermost
decagon is denoted by Q̂ and the middle decagon by Q̄ with vertices given by (10). There are ten
triangles of type (a), which are all further subdivided into eight regions of type (a1), . . . , ( a8), as
is indicated for one case in the magnification on the left. This is determined by possible overlaps
of this triangle with the ten regions each of types (b) and (c), see the text.

where e0, . . . ,e4 are the standard unit vectors in R
5, with subscripts counted mod 5

(ej ≡ ej±5).
The projection of Cu(5) with these 32 points into W is a polytope P with 40 edges

connecting the 22 vertices, and with 20 faces. We let P i = W Tni for i = 0, . . . , 31. The
bottom is P 0 = (0, 0, 0) and top is P 31 = (0, 0, 5); they are called the tips of the polytope.
The remaining 20 vertices of P are

P j+1 = (dj , 1), P j+6 = (dj + dj+1, 2),

P j+21 = (−dj−2 − dj−1, 3), P j+26 = (−dj−1, 4),
(7)

for j = 0, . . . , 4. The other ten points P 11, . . . ,P 20 are in the interior of the polytope and
are given by

P 11+j = (dj + dj+2, 2), P 16+j = (−dj+1 − dj−1, 3), (8)

again for j = 0, . . . , 4.
The orthogonal projection of Cu(5) into D is a decagon Q with ten edges connecting the

ten vertices, see figure 1. Let Qi = DTni for i = 0, . . . , 31. Then the vertices of the decagon
are

Q11+j = −pd3−2j , Q16+j = pd5−2j , (9)

with j = 0, . . . , 4, and p = (
√

5 + 1)/2. The remaining 22 points Q0, . . . ,Q10 and
Q21, . . . ,Q31 are in the interior; they are given by

Q0 = Q31 = 0, Qj+1 = d5−2j , Q26+j = −d2−2j ,

Qj+6 = p−1d4−2j , Q21+j = −p−1d3−2j .
(10)

Thus if the orthogonal projection DT(k − γ) is in Q, then its projection W Tk is in L.
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Consider a polytope P in L whose bottom is the projection of a point k̂ which is
orthogonally projected onto the centre of the decagon, then the ten vertices of P at height z = 1
or z = 4 correspond to the vertices of the middle decagon Q̄, see figure 1; the ten vertices of
the polytope at height z = 2 or z = 3 correspond to the vertices of the innermost decagon Q̂,
while the ten interior points of the polytope correspond to the vertices of the (outer) decagon
Q shown in figure 1.

The points in the quasiperiodic lattice L need a careful analysis. We shall show that
L consists of polytopes P with 22 vertices and 4 interior points which are shared with
neighbouring polytopes. We shall also show that it is periodic in the z-direction—the direction
of the line joining the two tips of P—with period 5 corresponding to the height of P .

3. Overlapping unit cells

The window Q is known [4, 26] to be everywhere dense and uniformly distributed. Thus each
point in Q corresponds to a point in the quasiperiodic lattice L. Using an idea of de Bruijn
[4], we may find out the condition for both k and k + ni to satisfy the mesh condition—to lie
both in the window of acceptance, which give insights to how points in L are related to one
another.

It is straightforward to show that every point inside the innermost decagon Q̂ corresponds
to a point in L that is connected with ten neighbours, and is in fact a tip of a polytope, as
the middle decagon Q̄ whose centre is shifted to a point inside Q̂ still lies inside Q. This
innermost decagon Q̂ is further divided into ten triangles2. Whenever the centre of a decagon
Q is shifted to a point inside one of the triangles, four of the vertices of the shifted outer
decagon now lie inside Q. More precisely, if DT(k − γ) is inside triangle (a) in figure 1,
then W Tk is a tip of a polytope P whose interior points W T(k + n20),W

T(k + n13),

W T(k + n18) and W T(k + n11)—corresponding to the four points on Q on the opposite
side of triangle (a)—are now also in L. This means each polytope in L can have only four
interior points which are also in L. Thus each such unit cell contains 26 atoms, 22 exterior
and 4 interior sites.

It is also easy to find out how the polytopes share these interior points. This is equivalent
to finding the condition that both k and k + ni for i = 1, . . . , 10 or i = 21, . . . , 30 are
orthogonally projected into Q̂.

Consider the ten vertices of the polytope at height z = 1 or z = 4 corresponding to the
vertices of middle decagon Q̄. When the centre of the decagon is shifted to a point in one of
the ten rhombs of type (b) shown in figure 1, then one of the ten vertices of the shifted Q̄ is
inside Q̂. For example in figure 1, W T(k) and W T(k + n28) are both tips of polytopes, with
n28 being the point on Q̄ on the opposite side of rhomb (b). As a consequence, the polytope
whose top is W T(k + n28) shares with the polytope P whose bottom is W T(k) a polyhedron
K with 12 faces.

Moreover, the vertices of the polytope at z = 2 or z = 3 correspond to the vertices
of Q̂. When the centre of this decagon is shifted to a point in one of the ten octagons of type
(c) shown also in figure 1, then one of the ten vertices of the shifted Q̂ moves inside Q̂. For
example in figure 1, W T(k) and W T(k + n25) are then both tips of polytopes, while n25 is
the point on Q̂ on the side opposite to the octagon. Such two polytopes share a polyhedron

2 A rotation of points in Q̂ by an angle of 2π�/5 corresponds to a rotation of the polytopes in L by an angle of 4π�/5
about the z-axis, while a rotation by π—inversion of points in Q̂ through the origin of decagon Q̂—corresponds to
the 3D inversion of polytopes in L through the centre of each polytope.
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J with six faces. When vertices of P at both z = 3 and z = 4 are inside Q̂, they are tops of
some polytopes3 that share with P either a polyhedron K or J .

By considering how these 20 regions intersect, we find that each of the triangles in Q̂
is further divided into eight regions, as shown for one case in figure 1, with this triangle
magnified on the left. When the orthogonal projection of k − γ is in (a1), its projection into
W is a polytope P intersecting with four others whose tips are at W T(k + n21),W

T(k + n8),
W T(k + n24) and W T(k + n6), and sharing with each of them a polyhedron of type J . When
the projection is in (a2) or (a3), either W T(k + n26) or W T(k + n1) becomes also a tip of
a polytope, so that P intersects with five polytopes, sharing with one of them a polyhedron
of type K. In (a8), P intersects with all of the above six polytopes. In regions (a5) or (a7),
W T(k + n21) or W T(k + n6) is no longer a tip and P intersects with five polytopes sharing
with two of them a polyhedron of type K. Finally, while in (a4) or (a6), either W T(k + n1)

or W T(k + n26) is no longer a tip, and P intersects with four polytopes sharing with one of
them a polyhedron K and with the other three a J .

Therefore, in summary, there are only five different possibilities:

(i) The points inside a quadrilateral of type (a1) correspond to a polytope intersecting with
four other polytopes sharing with each a polyhedron of type J . An example of this case
is shown in figure 2(a).

(ii) Points inside triangles of type (a2) or (a3) correspond to a polytope intersecting with
five other polytopes, sharing with one of them a polyhedron K and with the other four
polyhedra of type J . Such a case is shown in figure 2(b).

(iii) If the point is inside triangles of type (a4) or (a6), the polytope intersects with four other
polytopes sharing with one of them a polyhedron K and with the other three polyhedra of
type J .

(iv) If the point is in a triangle (a5) or (a7), the polytope intersects with five other polytopes
sharing with two of them polyhedra of type K and with the other three polyhedra J .

(v) Finally, if the point is inside a pentagon (a8), the polytope intersects with six other
polytopes sharing with two of them a K and with the other four a J , as is shown in
figure 3.

The relative frequencies are related to the ratios of their areas and therefore the normalized
probabilities are given by

Pa1 = 2p−3, Pa2 = Pa3 = p−6, Pa4 = Pa6 = p−5,

Pa5 = Pa7 = p−6, Pa8 = p−5 + p−7.
(11)

4. Parallelepipeds and windows

Now the condition that k satisfies the mesh condition can be further simplified by considering
parallelepiped P(k4, k0, k1) sandwiched between the six grid planes k4−1, k4, k0−1, k0, k1−1
and k1. Using (2) for the grid planes, we can solve for the points of intersections, and find that
for every point R in P(k4, k0, k1), we may write

K0(R) = k0, K1(R) = k1, K2(R) = �α� + k4 + m,

K3(R) = �β� + k1 + n, K4(R) = k4,
(12)

3 We shall later show that lattice L is periodic in the z-direction with period 5.
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(a) (b)

Figure 2. (a) When the orthogonal projection of k − γ is in region (a1), its projection in L is
a polytope sharing an interior point with each of the four neighbouring polytopes whose tips are
projections of k + n21, k + n8, k + n24 and k + n6; the shared interior points are projections
of k + n11, k + n16, k + n14 and k + n19. (b) When it is in region (a2), the polytope has five
neighbouring polytopes sharing the same interior points. The additional polytope has its top at
W T(k + n26).

(a) (b)

Figure 3. The polytope P and its six neighbours in L for case (a8). Their intersections with P are
indicated with different colours. In (a) the orientation is (θ, φ) = (0, 80◦); in (b) (θ, φ) = (90◦, 0),
so that each polytope appears as a decagon.

where �x� is the greatest integer less than or equal to x, while m and n are integers satisfying
−1 � m, n � 2 and

α = p−1(k0 − k1 − γ0 + γ1) + γ2 − γ4,

β = p−1(k0 − k4 − γ0 + γ4) + γ3 − γ1.
(13)
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The range of m and n in equation (12) is limited by their possible values at the eight corners
of the parallelepiped, but not all 16 choices are allowed by the mesh condition. Therefore, we
now project K(R) given by (12) to D and find

DT(K(R) − γ) =
4∑

j=0

(Kj (R) − γj )dj = (m − a)d2 + (n − b)d3, (14)

in which a ≡ {α} ≡ α − �α� and b ≡ {β} ≡ β − �β�. The vector (14) must lie within
the decagon Q. Thus the allowed values of m and n are determined by a and b only. As
the differences k0 − k4 and k0 − k1 run through all integer values, we find from Kronecker’s
theorem [27] that a and b are everywhere dense and uniformly distributed in the interval (0, 1).
Proofs of such ‘ergodicity’ in more general situations can be found, e.g., in the works of Hof
and Schlottmann [28, 29].

5. Periodicity in third direction

Furthermore, because of the difference property shown in (13), α and β, which determine the
configuration of the parallelepiped, remain the same, if (k0, k1, k4) → (k0 + �, k1 + �, k4 + �).
As a consequence we find K(R) → K(R) + �n31, and its projection is periodic in the
z-direction with period equal to 5. It is also interesting to note that if γ → γ − 1

5cn31, α and
β in (13) are also unchanged, so that the projection into the 3D space does not show drastic
changes when c 
= 0, which is behaviour very different from the 2D case [21].

It is not difficult to find values of (a − m, b − n) in (14) corresponding to the ten vertices
of the decagon Q given by (9). We find

Q16 ↔ (a − 0, b − 0) = (1, 1), Q11 ↔ (a − 0, b + 1) = (0, p),

Q18 ↔ (a − 1, b + 1) = (−1, p), Q13 ↔ (a − 2, b + 1) = (−p, 1),

Q20 ↔ (a − 2, b − 0) = (−p, 0), Q15 ↔ (a − 1, b − 1) = (0,−1),

Q17 ↔ (a − 1, b − 2) = (0,−p), Q12 ↔ (a − 0, b − 2) = (1,−p),

Q19 ↔ (a + 1, b − 2) = (p,−1), Q14 ↔ (a + 1, b − 1) = (p, 0),

(15)

up to ambiguities when a or b is integer, as m or n changes by 1 when choosing a or b to
be 0 or 1. The edges of decagon Q lead to linear equations in (a − m, b − n) and the mesh
condition for K(R) becomes a set of inequalities in a − m and b − n as shown in figure 4.
Hence, it is very easy to create a routine to generate L.

We note that L is periodic in the longitudinal or z-direction with period 5, and aperiodic
in the horizontal directions. This is a model with five layers which repeat in the z-direction
periodically. In each of the layers, the points behave similarly, and the allowed sites for z = 3
are shown in figure 5(a). This shows decagonal symmetry, but the layer may not be covered
by Penrose tiles. In figure 5(b), we have sites for atoms in all five layers plotted, with sites in
different layers represented by different symbols and colours.

Therefore, L is another example of a decagonal quasicrystal. Decagonal quasicrystals
exist in nature, and have been extensively studied experimentally and theoretically [30–35].
From Steurer’s review [31], one finds translational periods along the ten-fold z-axis varying
from 4 Å to 16 Å for different alloys, which may allow two layers [33], or even five or more
layers, within a period.

A situation somewhat similar to ours is found by Ben–Abraham, Lerer and Snapir [14],
who find that the projection of a 6D lattice to 3D for a certain choice of bases produces a



9042 H Au-Yang and J H H Perk

0 1

1

1

1

Q16

Q11

Q18

Q14

Q19
Q12

Q17

Q15

Q20

Q13

x

x=p

x= p

y= p

px+
y=

p 2

x+py=p 2

x
y=

p
2x+py=

p 2

px+
y=

p 2

x
y=

p
2

(m,n)=(0,0)

(0,1)(1,1)

(1,0)(2,0)

(2, 1) (1, 1) (0, 1)

( 1,0)

( 1,1)

( 1,2)(0,2)(1,2)

(2,1)

y=p
y

Figure 4. The image of Q under the inverse mapping of (14) into the (a − m, b − n) plane. The
boundaries of regions with different (m, n) are given by linear equations in terms of x ≡ a − m

and y ≡ b − n.

(a) (b)

Figure 5. The allowed positions in each layer. (a) Allowed sites at height z = 3 are plotted.
(b) All layers are plotted: points for z = 1 are represented by black boxes; for z = 2 by red circles;
for z = 3 by blue diamonds; for z = 4 by green crosses; for z = 5 by brown points.

quasicrystal lattice which is also periodic in the z-direction. Their model has six-fold rather
than five-fold symmetry.

The projection of Z
5 → R

3 is well known [30, 34, 36]. However, interpreting the
3D quasicrystal lattice L as overlapping polytopes P provides a more systematic way to
understand this lattice. We find that each unit cell has 26 sites, sharing the four interior sites
with its neighbours. The lattice is periodic in the z-direction with period 5, and quasiperiodic
in the xy-directions. Unlike the projection of Z

5 → R
2, which undergoes drastic change in
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behaviour (no inflation and deflation rules) if c 
= 0, the projections into 3D are in the same
class for c = 0 and c 
= 0.

Since real quasicrystals have icosahedra or triacontahedra as unit cells, which are
projections of a six-dimensional hypercube to a 3D space [10], the above method perhaps
can also be used to determine all possible overlappings and their frequencies.
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